VEGF signalling causes stalls in brain capillaries and reduces cerebral blood flow in Alzheimer’s mice

Author:

Ali Muhammad1,Falkenhain Kaja1,Njiru Brendah N1,Murtaza-Ali Muhammad1,Ruiz-Uribe Nancy E1,Haft-Javaherian Mohammad1,Catchers Stall,Nishimura Nozomi1,Schaffer Chris B1,Bracko Oliver1

Affiliation:

1. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 148532

Abstract

Abstract Increased incidence of stalled capillary blood flow caused by adhesion of leucocytes to the brain microvascular endothelium leads to a 17% reduction of cerebral blood flow (CBF) and exacerbates short-term memory loss in multiple mouse models of Alzheimer’s disease. Here, we report that Vascular Endothelial Growth Factor (VEGF) signaling at the luminal side of the brain microvasculature plays an integral role in the capillary stalling phenomenon of the APP/PS1 mouse model. Administration of the anti-mouse VEGF-A164 antibody, an isoform that inhibits blood brain barrier (BBB) hyperpermeability, reduced the number of stalled capillaries within an hour of injection, leading to an immediate increase in average capillary blood flow but not capillary diameter. VEGF-A inhibition also reduced the overall eNOS protein concentrations, increased occludin levels, and decreased the penetration of circulating Evans Blue dye across the BBB into the brain parenchyma, suggesting increased BBB integrity. Capillaries prone to neutrophil adhesion after anti-VEGF-A treatment also had lower occludin concentrations than flowing capillaries. Taken together, our findings demonstrate that VEGF-A signaling in APP/PS1 mice contributes to aberrant eNOS/occludin- associated BBB permeability, increases the incidence of capillary stalls, and leads to reductions in CBF. Reducing leucocyte adhesion by inhibiting luminal VEGF signaling may provide a novel and well-tolerated strategy for improving brain microvascular blood flow in Alzheimer’s disease. patients.

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3