Sensory processing dysregulations as reliable translational biomarkers in SYNGAP1 haploinsufficiency

Author:

Carreño-Muñoz Maria Isabel12,Chattopadhyaya Bidisha1,Agbogba Kristian1,Côté Valérie13,Wang Siyan4,Lévesque Maxime4,Avoli Massimo4,Michaud Jacques L125,Lippé Sarah13,Di Cristo Graziella125

Affiliation:

1. Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada

2. Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada

3. Department of Psychology, Université de Montréal, Montreal, Quebec, Canada

4. Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada

5. Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada

Abstract

Abstract Amongst the numerous genes associated with intellectual disability, SYNGAP1 stands out for its frequency and penetrance of loss-of-function variants found in patients, as well as the wide range of co-morbid disorders associated with its mutation. Most studies exploring the pathophysiological alterations caused by Syngap1 haploinsufficiency in mouse models have focused on cognitive problems and epilepsy, however whether and to what extent sensory perception and processing are altered by Syngap1 haploinsufficiency is less clear. By performing EEG recordings in awake mice, we identified specific alterations in multiple aspects of auditory and visual processing, including increased baseline gamma oscillation power, increased theta/gamma phase amplitude coupling following stimulus presentation and abnormal neural entrainment in response to different sensory modality-specific frequencies. We also report lack of habituation to repetitive auditory stimuli and abnormal deviant sound detection. Interestingly, we found that most of these alterations are present in human patients as well, thus making them strong candidates as translational biomarkers of sensory-processing alterations associated with SYNGAP1/Syngap1 haploinsufficiency.

Publisher

Oxford University Press (OUP)

Subject

Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3