Cholinergic system correlates of postural control changes in Parkinson’s disease freezers

Author:

Roytman Stiven1ORCID,Paalanen Rebecca2,Griggs Alexis13,David Simon1,Pongmala Chatkaew14,Koeppe Robert A14,Scott Peter J H1,Marusic Uros156,Kanel Prabesh134ORCID,Bohnen Nicolaas I12347ORCID

Affiliation:

1. Department of Radiology, University of Michigan , Ann Arbor, MI 48109 , USA

2. Department of Neurology, University of Michigan , Ann Arbor, MI 48109 , USA

3. Parkinson’s Foundation Research Center of Excellence, University of Michigan , Ann Arbor, MI 48109 , USA

4. Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan , Ann Arbor, MI 48109 , USA

5. Institute for Kinesiology Research, Science and Research Centre Koper , 6000 Koper , Slovenia

6. Department of Health Sciences, Alma Mater Europaea—ECM , 2000 Maribor , Slovenia

7. Neurology Service and GRECC, VA Ann Arbor Healthcare System , Ann Arbor, MI 48105 , USA

Abstract

Abstract Postural instability and freezing of gait are the most debilitating dopamine-refractory motor impairments in advanced stages of Parkinson’s disease because of increased risk of falls and poorer quality of life. Recent findings suggest an inability to efficaciously utilize vestibular information during static posturography among people with Parkinson’s disease who exhibit freezing of gait, with associated changes in cholinergic system integrity as assessed by vesicular acetylcholine transporter PET. There is a lack of adequate understanding of how postural control varies as a function of available sensory information in patients with Parkinson’s disease with freezing of gait. The goal of this cross-sectional study was to examine cerebral cholinergic system changes that associate with inter-sensory postural control processing features as assessed by dynamic computerized posturography and acetylcholinesterase PET. Seventy-five participants with Parkinson’s disease, 16 of whom exhibited freezing of gait, underwent computerized posturography on the NeuroCom© Equitest sensory organization test platform, striatal dopamine, and acetylcholinesterase PET scanning. Findings demonstrated that patients with Parkinson’s disease with freezing of gait have greater difficulty maintaining balance in the absence of reliable proprioceptive cues as compared to those without freezing of gait [β = 0.28 (0.021, 0.54), P = 0.034], an effect that was independent of disease severity [β = 0.16 (0.062, 0.26), P < 0.01] and age [β = 0.092 (−0.005, 0.19), P = 0.062]. Exploratory voxel-based analysis revealed an association between postural control and right hemispheric cholinergic network related to visual-vestibular integration and self-motion perception. High anti-cholinergic burden predicted postural control impairment in a manner dependent on right hemispheric cortical cholinergic integrity [β = 0.34 (0.065, 0.61), P < 0.01]. Our findings advance the perspective that cortical cholinergic system might play a role in supporting postural control after nigro-striatal dopaminergic losses in Parkinson’s disease. Failure of cortex-dependent visual-vestibular integration may impair detection of postural instability in absence of reliable proprioceptive cues. Better understanding of how the cholinergic system plays a role in this process may augur novel treatments and therapeutic interventions to ameliorate debilitating symptoms in patients with advanced Parkinson’s disease.

Funder

Department of Veterans Affairs

Michael J. Fox Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3