The benefits of permutation-based genome-wide association studies

Author:

John Maura12ORCID,Korte Arthur3ORCID,Grimm Dominik G124ORCID

Affiliation:

1. Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics , Petersgasse 18, 94315 Straubing , Germany

2. Weihenstephan-Triesdorf University of Applied Sciences, Bioinformatics , Petersgasse 18, 94315 Straubing , Germany

3. University of Würzburg, Faculty of Biology, Julius-von-Sachs Institute , Julius-von-Sachs-Platz 3, 97082 Würzburg , Germany

4. Technical University of Munich, TUM School of Computation, Information and Technology , Boltzmannstraße 3, 85748 Garching , Germany

Abstract

Abstract Linear mixed models (LMMs) are a commonly used method for genome-wide association studies (GWAS) that aim to detect associations between genetic markers and phenotypic measurements in a population of individuals while accounting for population structure and cryptic relatedness. In a standard GWAS, hundreds of thousands to millions of statistical tests are performed, requiring control for multiple hypothesis testing. Typically, static corrections that penalize the number of tests performed are used to control for the family-wise error rate, which is the probability of making at least one false positive. However, it has been shown that in practice this threshold is too conservative for normally distributed phenotypes and not stringent enough for non-normally distributed phenotypes. Therefore, permutation-based LMM approaches have recently been proposed to provide a more realistic threshold that takes phenotypic distributions into account. In this work, we discuss the advantages of permutation-based GWAS approaches, including new simulations and results from a re-analysis of all publicly available Arabidopsis phenotypes from the AraPheno database.

Funder

Federal Ministry of Education and Research

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3