A semiautomated microfluidic ELISA for the detection of hemophagocytic lymphohistiocytosis biomarkers

Author:

Herskovits Adrianna Zara1,Johnson William T2,Oved Joseph H3,Irwin Spencer1,Doddi Sital1,John Deronna1,Ocasio Angelica1,Ramanathan Lakshmi V1

Affiliation:

1. Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center , New York, NY , US

2. Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center , New York, NY , US

3. Division of Transplantation & Cellular Therapies, Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY , US

Abstract

Abstract Objectives Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening condition characterized by a massive overactivation of the immune system. Because the clinical findings are nonspecific, the development of assays to facilitate rapid diagnosis is critical for patient care. The objectives of this study were to evaluate the performance of a microfluidic enzyme-linked immunosorbent assay (ELISA) for HLH biomarkers and investigate the impact of insourcing this testing on workflow, cost, and turnaround time in a tertiary-care cancer hospital. Methods Trends in order volume were evaluated for C-X-C motif chemokine ligand 9 (CXCL9) and soluble interleukin 2 receptor ɑ (sIL2R), and a microfluidic ELISA was used to measure these analytes in serum samples. Analyte values, turnaround time, and costs were compared for this assay relative to reference laboratory testing. Results Test ordering has increased from 187 to 1030 requests annually over the past 5 years. Insourcing these analytes on a semiautomated ELISA can decrease time to result by approximately 2 days and generate a cost savings of roughly $140,000 annually within our laboratory. Conclusions Using a semiautomated ELISA for sIL2R and CXCL9 may help physicians arrive at a diagnosis and monitor therapy for patients with HLH while decreasing turnaround time and costs within the clinical laboratory.

Funder

Food and Drug Administration

National Institutes of Health

National Cancer Institute Cancer Center

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3