Resolution of Virtual Depth Sectioning from Four-Dimensional Scanning Transmission Electron Microscopy

Author:

Terzoudis-Lumsden E W C1,Petersen T C12,Brown H G3ORCID,Pelz P M4,Ophus C5,Findlay S D1ORCID

Affiliation:

1. School of Physics and Astronomy, Monash University , Melbourne, VIC 3800 , Australia

2. Monash Centre for Electron Microscopy, Monash University , Melbourne, VIC 3800 , Australia

3. Ian Holmes Imaging Center, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne, VIC 3052 , Australia

4. Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander Universität Erlangen-Nürnberg , Erlangen, Bavaria 91058 , Germany

5. National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, CA 94720 , USA

Abstract

AbstractOne approach to three-dimensional structure determination using the wealth of scattering data in four-dimensional (4D) scanning transmission electron microscopy (STEM) is the parallax method proposed by Ophus et al. (2019. Advanced phase reconstruction methods enabled by 4D scanning transmission electron microscopy, Microsc Microanal25, 10–11), which determines the scattering matrix and uses it to synthesize a virtual depth-sectioning reconstruction of the sample structure. Drawing on an equivalence with a hypothetical confocal imaging mode, we derive contrast transfer and point spread functions for this parallax method applied to weakly scattering objects, showing them identical to earlier depth-sectioning STEM modes when only bright field signal is used, but that improved depth resolution is possible if dark field signal can be used. Through a simulation-based study of doped Si, we show that this depth resolution is preserved for thicker samples, explore the impact of shot noise on the parallax reconstructions, discuss challenges to making use of dark field signal, and identify cases where the interpretation of the parallax reconstruction breaks down.

Funder

Australian Government Research Training Program Scholarship

Australian Research Council

Office of Basic Energy Sciences

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3