Self-consistent dynamical models with a finite extent – II. Radially truncated models

Author:

Baes Maarten1ORCID

Affiliation:

1. Sterrenkundig Observatorium, Universiteit Gent , Krijgslaan 281 S9, B-9000 Gent, Belgium

Abstract

ABSTRACT Galaxies, dark matter haloes, and star clusters have a finite extent, yet most simple dynamical models have an infinite extent. The default method to generate dynamical models with a finite extent is to apply an energy truncation to the distribution function, but this approach is not suited to construct models with a preset density profile and it imposes unphysical constraints on the orbit population. We investigate whether it is possible to construct simple dynamical models for spherical systems with a preset density profile with a finite extent, and ideally with a different range of orbital structures. We systematically investigate the consistency of radially truncated dynamical models, and demonstrate that no spherical models with a discontinuous density truncation can be supported by an ergodic orbital structure. On the other hand, we argue that many radially truncated models can be supported by a tangential Osipkov–Merritt orbital structure that becomes completely tangential at the truncation radius. We formulate a consistency hypothesis for radially truncated models with such an orbital structure, and test it using an analytical example and the numerical exploration of a large model parameter space using the sphecow code. We physically interpret our results in terms of the occupancy of bound orbits, and we discuss possible extensions of the tangential Osipkov–Merritt orbital structure that can support radially truncated models.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-consistent dynamical models with a finite extent – III. Truncated power-law spheres;Monthly Notices of the Royal Astronomical Society;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3