Identifying the electromagnetic counterparts of LISA massive black hole binaries in archival LSST data

Author:

Xin Chengcheng1ORCID,Haiman Zoltán12

Affiliation:

1. Department of Astronomy, Columbia University , New York, NY 10027 , USA

2. Department of Physics, Columbia University , New York, NY 10027 , USA

Abstract

ABSTRACT LSST will catalogue the light curves of up to 100 million quasars. Among these there can be $\sim$100 ultra-compact massive black hole (MBH) binaries, whose gravitational waves (GWs) can be detected 5–15 yr later by LISA. Here, we assume such a LISA detection occurred, and assess whether or not its electromagnetic (EM) counterpart can be identified as a periodic quasar in archival LSST data. We use the binary’s properties derived from the LISA waveform, including the evolution of its orbital frequency, its total mass, distance, and sky localization, to predict the redshift, magnitude, and historical periodicity of the quasar expected in the LSST data. We then use Monte Carlo simulations to compute the false alarm probability (FAP), i.e. the number of quasars in the LSST catalogue matching these properties by chance, based on the (extrapolated) quasar luminosity function, the cadence of LSST, and intrinsic ‘damped random walk’ quasar variability. We analyse four fiducial LISA binaries, with masses and redshifts of $(M_{\rm bin}/{\rm M_{\odot }},z) = (3\times 10^5,0.3)$, $(3\times 10^6,0.3)$, $(10^7,0.3)$, and $(10^7,1)$. While noise and aliasing due to LSST’s cadence produces false periodicities by chance, we find that the frequency chirp of the LISA source during the LSST observations washes out these noise peaks and allows the genuine source to stand out in appropriately scaled Lomb–Scargle periodograms. We find that all four fiducial binaries can be uniquely identified, with ${\rm FAP}\lt 10^{-5}$, a week or more before merger. This should enable follow-up EM observations targeting individual EM counterparts during their inspiral stage.

Funder

NSF

NASA

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3