A new understanding of why the aurora has explosive characteristics

Author:

Akasofu Syun-Ichi1

Affiliation:

1. International Arctic Research Center, University of Alaska Fairbanks , Fairbanks, 99775 AK, USA

Abstract

ABSTRACT This article describes a new understanding of the explosive nature of auroras, called auroral substorms, on the basis of a series of processes, from power supply (dynamo), circuit/current, and dissipation (auroral substorms) – the electric current approach, in which the magnetosphere or more specifically the primary magnetosphere-ionosphere coupling system (the primary M-I system) plays a crucial role. The primary M-I system has an anomaly; it cannot dissipate the dynamo power much for about 1 h after the dynamo power becomes above 1011 w. This anomaly is due to a low conductivity of the quiet-time ionosphere to dissipate increasing power. Thus, the power is accumulated in the inner magnetosphere (at about 6 Re; Re = earth’s radius) as magnetic energy, inflating the inner magnetosphere. When the accumulated energy reaches to about 1016 J, the primary M-I system seems to become unstable and unload impulsively the accumulated magnetic energy, deflating the magnetosphere. This deflating process generates the secondly M-I system, which is associated with an electric field 5–50 mV/m and field-aligned currents, ionizing the ionosphere and increasing the conductivity. Therefore, the primary M-I system can perform like an ordinary electrical system. It is this particular nature that exhibits explosive auroral displays. This paper describes systematically and semiquantitatively key points of this series of processes based on a few decades of work. The electric current approach is rather ‘new’ in substorm research and thus is rudimental at its development stage, so that n crucial issues are mentioned for future studies at the end.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The basic solar wind speed distribution and its sunspot cycle variations;Frontiers in Astronomy and Space Sciences;2023-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3