The SOUX AGN sample: optical/UV/X-ray SEDs and the nature of the disc

Author:

Mitchell Jake A J1ORCID,Done Chris1,Ward Martin J1,Kynoch Daniel123ORCID,Hagen Scott1ORCID,Lusso Elisabeta45ORCID,Landt Hermine1

Affiliation:

1. Centre for Extragalactic Astronomy, Department of Physics, Durham University , South Road, Durham DH1 3LE , UK

2. Astronomical Institute, Czech Academy of Sciences , Boční II 1401, CZ-141 00 Prague , Czech Republic

3. School of Physics and Astronomy, University of Southampton , University Road, Southampton SO17 1BJ , UK

4. Dipartimento di Fisica e Astronomia, Università di Firenze , via G. Sansone 1, I-50019 Sesto Fiorentino, Firenze , Italy

5. INAF – Osservatorio Astrofisico di Arcetri , L.go Enrico Fermi 5, I-50125 Firenze , Italy

Abstract

ABSTRACT We use the SOUX sample of ∼700 active galactic nucleus (AGN) to form average optical-ultraviolet (UV)-X-rays spectral energy distributions (SEDs) on a two-dimensional (2D) grid of MBH and L2500. We compare these with the predictions of a new AGN SED model, qsosed, which includes prescriptions for both hot and warm Comptonization regions as well as an outer standard disc. This predicts the overall SED fairly well for 7.5 < log(MBH/M⊙) < 9.0 over a wide range in L/LEdd, but at higher masses the outer disc spectra in the model are far too cool to match the data. We create optical-UV composites from the entire Sloan Digital Sky Survey sample and use these to show that the mismatch is due to there being no significant change in spectral shape of the optical-UV continuum across several decades of MBH at constant luminosity. We show for the first time that this cannot be matched by standard disc models with high black hole spin. These apparently fit, but are not self-consistent as they do not include the General Relativistic effects for the emission to reach the observer. At high spin, increased gravitational redshift compensates for almost all of the higher temperature emission from the smaller inner disc radii. The data do not match the predictions made by any current accretion flow model. Either the disc is completely covered by a warm Comptonization layer whose properties change systematically with L/LEdd, or the accretion flow structure is fundamentally different to that of the standard disc models.

Funder

Science and Technology Facilities Council

NASA

California Institute of Technology

Czech Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3