Orbital evolution of close binary systems: comparing viscous and wind-driven circumbinary disc models

Author:

Turpin George A1ORCID,Nelson Richard P1

Affiliation:

1. Department of Physics and Astronomy, Astronomy Unit, Queen Mary University of London , London E1 4NS , UK

Abstract

ABSTRACT Previous work has shown that interactions between a central binary system and a circumbinary disc (CBD) can lead to the binary orbit either shrinking or expanding, depending on the properties of the disc. In this work, we perform two-dimensional hydrodynamical simulations of CBDs surrounding equal mass binary systems that are on fixed circular orbits, using the athena++ code in Cartesian coordinates. Previous studies have focused on discs where viscosity drives angular momentum transport. The aim of this work is to examine how the evolution of a binary system changes when angular momentum is extracted from the disc by a magnetized wind. In this proof-of-concept study, we mimic the effects of a magnetic field by applying an external torque that results in a prescribed radial mass flux through the disc. For three different values of the radial mass flux, we compare how the binary system evolves when the disc is either viscous or wind driven. In all cases considered, our simulations predict that the binary orbit should shrink faster by a factor of a few when surrounded by a wind-driven CBD compared to a corresponding viscous CBD. In-spiral time-scales of ∼106–107 yr are obtained for circular binaries surrounded by CBDs with masses typical of protoplanetary discs, indicating that significant orbital shrinkage can occur through binary–disc interactions during Class I/II pre-main-sequence phases.

Funder

STFC

BEIS

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3