Generation of nonlinear magnetic flux tube wave energies in Procyon A

Author:

Fawzy D E1,Saygac A T23,Stȩpień K4

Affiliation:

1. Faculty of Engineering, Izmir University of Economics, Izmir 35330, Turkey

2. Dept. of Astronomy & Space Sciences, University of Istanbul, 34134 Istanbul, Turkey

3. Istanbul University Application & Research Center, 34134 Istanbul, Turkey

4. Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland

Abstract

Abstract The aim of the current study is the computation of the magnetic flux tube wave energies and fluxes generated in the convection zone of Procyon A. This is a subgiant of spectral type F5 IV-V showing chromospheric and coronal activities. The mechanisms responsible for the generation of different wave modes include the interaction of the thin and vertically oriented magnetic flux tube embedded in magnetic-free regions with turbulence in the convection zone of Procyon A. We are considering longitudinal, transverse and acoustic wave modes. Turbulence in the convection zone is modeled by the extended Kolmogorov turbulent energy spectrum and the modified Gaussian frequency factor. Different magnetic flux tube models with different degrees of magnetic activities were considered. The current approach takes the nonlinear effects into consideration. The results show that there is enough wave energy in the three different forms to heat the outer layers of the star. The obtained acoustic wave energies are larger than those of the longitudinal tube wave energies compared to the solar case. This can be explained by the relatively low magnetic field strength. On the other side, our computations show the importance of the transverse wave energies compared to the energies carried by the longitudinal waves. The former waves carry energy several (between 2 and 14) times higher than the latter. The obtained wave energies are essential for constructing time-dependent model chromospheres and for the predictions of atmospheric oscillations to be compared e.g. with the data collected by the CoRoT and Kepler missions.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3