A new star formation recipe for magnetohydrodynamics simulations of galaxy formation

Author:

Girma Eden1ORCID,Teyssier Romain1ORCID

Affiliation:

1. Department of Astrophysical Sciences, Princeton University , Peyton Hall, Princeton, NJ 08544 , USA

Abstract

ABSTRACT Star formation has been observed to occur at globally low yet locally varying efficiencies. As such, accurate capture of star formation in numerical simulations requires mechanisms that can replicate both its smaller scale variations and larger scale properties. Magnetic fields are thought to play an essential role within the turbulent interstellar medium (ISM) and affect molecular cloud collapse. However, it remains to be fully explored how a magnetized model of star formation might influence galaxy evolution. We present a new model for a sub-grid star formation recipe that depends on the magnetic field. We run isolated disc galaxy simulations to assess its impact on the regulation of star formation using the code ramses. Building upon existing numerical methods, our model derives the star formation efficiency from local properties of the sub-grid magnetized ISM turbulence, assuming a constant Alfvén speed at sub-parsec scales. Compared to its non-magnetized counterpart, our star formation model suppresses the initial starburst by a factor of 2 while regulating star formation later on to a nearly constant rate of ∼1 M⊙ yr−1. Differences also arise in the local Schmidt law with a shallower power-law index for the magnetized star formation model. Our results encourage further examination into the notion that magnetic fields are likely to play a non-trivial role in our understanding of star and galaxy formation.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3