A search for millisecond radio bursts from Messier 82

Author:

Paine S12,Hawkins T1,Lorimer D R12,Stanley J1,Kania J12ORCID,Crawford F3ORCID,Fairfield N4

Affiliation:

1. Department of Physics and Astronomy, West Virginia University , Morgantown, WV 26506-6315 , USA

2. Center for Gravitational Waves and Cosmology, Chestnut Ridge Building , Morgantown, WV 26505 , USA

3. Department of Physics and Astronomy, Franklin & Marshall College , P.O. Box 3003, Lancaster, PA 17604 , USA

4. Amateur Astronomer

Abstract

ABSTRACT Fast radio bursts (FRBs) are short-duration radio pulses of cosmological origin. Among the most common sources predicted to explain this phenomenon are bright pulses from a class of extremely highly magnetized neutron stars known as magnetars. Motivated by the discovery of an FRB-like pulse from the Galactic magnetar SGR 1935+2154, we searched for similar events in Messier 82 (M82). With a star formation rate 40 times that of the Milky Way, one might expect that the implied rate of events similar to that seen from SGR 1935+2154 from M82 should be 40 times higher than that of the Milky Way. We observed M82 at 1.4 GHz with the 20-m telescope at the Green Bank Observatory for 34.8 d. While we found many candidate events, none had a signal-to-noise ratio greater than 8. We also show that there are insufficient numbers of repeating low-significance events at similar dispersion measures to constitute a statistically significant detection. From these results, we place an upper bound for the rate of radio pulses from M82 to be 30 yr−1 above a fluence limit of 8.5 Jy ms. While this is less than nine times the rate of radio bursts from magnetars in the Milky Way inferred from the previous radio detections of SGR 1935+2154, it is possible that propagation effects from interstellar scattering are currently limiting our ability to detect sources in M82. Further searches of M82 and other nearby galaxies are encouraged to probe this putative FRB population.

Funder

Research Corporation for Scientific Advancement

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3