White dwarf constraints on geological processes at the population level

Author:

Buchan Andrew M12ORCID,Bonsor Amy2ORCID,Rogers Laura K2ORCID,Brouwers Marc G2,Shorttle Oliver23,Tremblay Pier-Emmanuel1

Affiliation:

1. Department of Physics, University of Warwick , Coventry CV4 7AL , UK

2. Institute of Astronomy, University of Cambridge , Madingley Road, Cambridge CB3 0HA , UK

3. Department of Earth Sciences, University of Cambridge , Downing Street, Cambridge CB2 3EQ , UK

Abstract

ABSTRACT White dwarf atmospheres are frequently polluted by material from their own planetary systems. Absorption features from Ca, Mg, Fe, and other elements can provide unique insights into the provenance of this exoplanetary material, with their relative abundances being used to infer accretion of material with core- or mantle-like composition. Across the population of white dwarfs, the distribution of compositions reveals the prevalence of geological and collisional processing across exoplanetary systems. By predicting the distribution of compositions in three evolutionary scenarios, this work assesses whether they can explain current observations. We consider evolution in an asteroid belt analogue, in which collisions between planetary bodies that formed an iron core lead to core- or mantle-rich fragments. We also consider layer-by-layer accretion of individual bodies, such that the apparent composition of atmospheric pollution changes during the accretion of a single body. Finally, we consider that compositional spread is due to random noise. We find that the distribution of Ca, Fe, and Mg in a sample of 202 cool DZs is consistent with the random noise scenario, although 7 individual systems show strong evidence of core-mantle differentiation from additional elements and/or low noise levels. Future surveys that detect multiple elements in each of a few hundred white dwarfs, with well-understood biases, have the potential to confidently distinguish between the three models.

Funder

Leverhulme Trust

ESA

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3