Dark lenses through the dust: parallax microlensing events in the VVV

Author:

Kaczmarek Zofia12,McGill Peter3,Evans N Wyn1,Smith Leigh C1,Wyrzykowski Łukasz2,Howil Kornel2,Jabłońska Maja2

Affiliation:

1. Institute of Astronomy, University of Cambridge , Madingley Rd, Cambridge CB3 0HA, UK

2. Astronomical Observatory, University of Warsaw , Al. Ujazdowskie 4, PL-00-478 Warszawa, Poland

3. Department of Astronomy and Astrophysics, University of California , Santa Cruz, CA 95064, USA

Abstract

ABSTRACT We use near-infrared photometry and astrometry from the VISTA Variables in the Via Lactea (VVV) survey to analyse microlensing events containing annual microlensing parallax information. These events are located in highly extincted and low-latitude regions of the Galactic bulge typically off-limits to optical microlensing surveys. We fit a catalogue of 1959 events previously found in the VVV and extract 21 microlensing parallax candidates. The fitting is done using nested sampling to automatically characterize the multimodal and degenerate posterior distributions of the annual microlensing parallax signal. We compute the probability density in lens mass-distance using the source proper motion and a Galactic model of disc and bulge deflectors. By comparing the expected flux from a main sequence lens to the baseline magnitude and blending parameter, we identify four candidates which have probability >50 per cent that the lens is dark. The strongest candidate corresponds to a nearby (≈0.78 kpc), medium-mass ($1.46^{+1.13}_{-0.71} \ M_{\odot }$) dark remnant as lens. In the next strongest, the lens is located at heliocentric distance ≈5.3 kpc. It is a dark remnant with a mass of $1.63^{+1.15}_{-0.70} \ M_{\odot }$. Both of those candidates are most likely neutron stars, though possibly high-mass white dwarfs. The last two events may also be caused by dark remnants, though we are unable to rule out other possibilities because of limitations in the data. We are also demonstrating future possibilities of studying similar events with the Roman Space Telescopeby modelling a mock dataset of Roman photometry and astrometry for an event resembling our strongest candidate.

Funder

European Commission

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3