The effects of surface fossil magnetic fields on massive star evolution: V. Models at low metallicity

Author:

Keszthelyi Z1ORCID,Puls J2,Chiaki G13,Nagakura H1ORCID,ud-Doula A4ORCID,Takiwaki T1,Tominaga N156

Affiliation:

1. Center for Computational Astrophysics, Division of Science, National Astronomical Observatory of Japan , 2-21-1, Osawa, Mitaka, Tokyo 181-8588 , Japan

2. LMU München, Universitätssternwarte , Scheinerstr. 1, D-81679 München , Germany

3. National Institute of Technology , Kochi College, 200-1 Monobe, Nankoku, Kochi 783-8508 , Japan

4. Penn State Scranton , 120 Ridge View Drive, Dunmore, PA 18512 , USA

5. Astronomical Science Program, Graduate Institute for Advanced Studies , SOKENDAI 2-21-1 Osawa, Mitaka, Tokyo 181-8588 , Japan

6. Department of Physics, Faculty of Science and Engineering, Konan University , 8-9-1 Okamoto, Kobe, Hyogo 658-8501 , Japan

Abstract

ABSTRACT At metallicities lower than that of the Small Magellanic Cloud, it remains essentially unexplored how fossil magnetic fields, forming large-scale magnetospheres, could affect the evolution of massive stars, thereby impacting the fundamental building blocks of the early Universe. We extend our stellar evolution model grid with representative calculations of main-sequence, single-star models with initial masses of 20 and 60 M$_\odot$, including appropriate changes for low-metallicity environments ($Z = 10^{-3}$–$10^{-6}$). We scrutinize the magnetic, rotational, and chemical properties of the models. When lowering the metallicity, the rotational velocities can become higher and the tendency towards quasi-chemically homogeneous evolution increases. While magnetic fields aim to prevent the development of this evolutionary channel, the weakening stellar winds lead to less efficient magnetic braking in our models. Since the stellar radius is almost constant during a blueward evolution caused by efficient chemical mixing, the surface magnetic field strength remains unchanged in some models. We find core masses at the terminal-age main sequence between 22 and 52 M$_\odot$ for initially 60 M$_\odot$ models. This large difference is due to the vastly different chemical and rotational evolution. We conclude that in order to explain chemical species and, in particular, high nitrogen abundances in the early Universe, the adopted stellar models need to be under scrutiny. The assumptions regarding wind physics, chemical mixing, and magnetic fields will strongly impact the model predictions.

Funder

NASA

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3