High-precision photometric and high-resolution spectroscopic characterization of HD 180347

Author:

Trust Otto1ORCID,Mashonkina Lyudmila2ORCID,Jurua Edward1,De Cat Peter3ORCID,Tsymbal Vadim2,Joshi Santosh4

Affiliation:

1. Department of Physics, Mbarara University of Science and Technology , P.O. Box 1410, Mbarara, Uganda

2. Institute of Astronomy, Russian Academy of Sciences , 119017, Pyatnitskaya str., 48, Moscow, Russia

3. Royal Observatory of Belgium , Ringlaan 3, B-1180 Brussel, Belgium

4. Aryabhatta Research Institute of Observational Sciences , Manora Peak, Nainital- 263002, India

Abstract

ABSTRACT We report the analysis of high-precision space-based photometric and high-resolution spectroscopic observations of HD 180347. The high-quality light curves from the Transiting Exoplanet Survey Satellite (TESS) under sectors 14, 15, and 26 were used. By visual inspection of the light curves and the Fourier transforms, only low-frequency signals (less than 1 d−1) were detected. After using wavelet, autocorrelation, and composite spectrum analyses, HD 180347 is classified as a rotational variable with a period of about 4.1 ± 0.2 d. In reference to the observation limit of TESS, no pulsations were detected. For the spectroscopic analysis, we used data collected with the High Efficiency and Resolution Mercator Échelle Spectrograph (HERMES). We determined the spectral type of this star and obtained atmospheric parameters such as the effective temperature, the surface gravity, and the projected rotational, microturbulent, and radial velocities. We performed a detailed chemical abundance analysis. The LTE abundances were derived for 25 chemical elements. For 13 of them, including Ca, Sc, Sr, Zr, and Ba, which are important for the characterization of chemical peculiarities, we also present the non-local thermodynamic equilibrium (NLTE) abundances. NLTE improves the accuracy of the derived abundances and confirms that Ca and Sc are depleted in HD 180347 relative to their solar abundances, while the heavy elements beyond Sr are enhanced, by more than 0.7 dex. Based on the spectral class and the element abundance pattern, we classify this star as Am (kA1hA8mA8).

Funder

Uppsala University

Department of Science and Technology

Belgian Federal Science Policy Office

FWO

MINECO

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3