Bottling the champagne: dynamics and radiation trapping of wind-driven bubbles around massive stars

Author:

Geen Sam1ORCID,de Koter Alex12

Affiliation:

1. Anton Pannekoek Institute for Astronomy, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

2. Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

Abstract

ABSTRACT In this paper, we make predictions for the behaviour of wind bubbles around young massive stars using analytic theory. We do this in order to determine why there is a discrepancy between theoretical models that predict that winds should play a secondary role to photoionization in the dynamics of H iiregions, and observations of young H iiregions that seem to suggest a driving role for winds. In particular, regions such as M42 in Orion have neutral hydrogen shells, suggesting that the ionizing radiation is trapped closer to the star. We first derive formulae for wind bubble evolution in non-uniform density fields, focusing on singular isothermal sphere density fields with a power-law index of -2. We find that a classical ‘Weaver’-like expansion velocity becomes constant in such a density distribution. We then calculate the structure of the photoionized shell around such wind bubbles, and determine at what point the mass in the shell cannot absorb all of the ionizing photons emitted by the star, causing an ‘overflow’ of ionizing radiation. We also estimate perturbations from cooling, gravity, magnetic fields and instabilities, all of which we argue are secondary effects for the conditions studied here. Our wind-driven model provides a consistent explanation for the behaviour of M42 to within the errors given by observational studies. We find that in relatively denser molecular cloud environments around single young stellar sources, champagne flows are unlikely until the wind shell breaks up due to turbulence or clumping in the cloud.

Funder

NOVA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3