Hydrodynamic simulations of the KT Eridani nova super-remnant

Author:

Healy-Kalesh M W1ORCID,Darnley M J1ORCID,Shara M M2ORCID,Lanzetta K M3,Garland J T2ORCID,Gromoll S4

Affiliation:

1. Astrophysics Research Institute, Liverpool John Moores University , IC2 Liverpool Science Park, Liverpool, L3 5RF, UK

2. Department of Astrophysics, American Museum of Natural History , Central Park West at 79th Street, New York, NY 10024, USA

3. Department of Physics and Astronomy, Stony Brook University , Stony Brook, NY 11794-3800, USA

4. Amazon Web Services , 410 Terry Ave. N, Seattle, WA 98109, USA

Abstract

Abstract A nova super-remnant (NSR) is an immense structure associated with a nova that forms when frequent and recurrent nova eruptions sweep up surrounding interstellar material (ISM) into a high density and distant shell. The prototypical NSR, measuring over 100 pc across, was discovered in 2014 around the annually erupting nova M 31N 2008-12a. Hydrodynamical simulations demonstrated that the creation of a dynamic NSR by repeated eruptions transporting large quantities of ISM is not only feasible but that these structures should exist around all novae, whether the white dwarf (WD) is increasing or decreasing in mass. But it is only the recurrent nova (RNe) with the highest WD masses and accretion rates that should host observable NSRs. KT Eridani is, potentially, the eleventh RNe recorded in the Galaxy and is also surrounded by a recently unveiled Hα shell tens of parsecs across, consistent with a NSR. Through modelling the nova ejecta from KT Eri, we demonstrate that such an observable NSR could form in approximately 50,000 years, which fits with the proper motion history of the nova. We compute the expected Hα emission from the KT Eri NSR and predict that the structure might be accessible to wide-field X-ray facilities.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3