Particulate Debris Released From Breast Implant Surfaces Is Highly Dependent on Implant Type

Author:

Hallab Nadim James1,Samelko Lauryn1,Hammond Dennis

Affiliation:

1. Department of Orthopedic Surgery, University of Illinois in Chicago, Chicago, IL, USA

Abstract

Abstract Background Although breast implants (BIs) have never been safer, factors such as implant debris may influence complications such as chronic inflammation and illness such as ALCL (anaplastic large cell lymphoma). Do different types of BIs produce differential particulate debris? Objectives The aim of this study was to quantify, investigate, and characterize the size, amount, and material type of both loosely bound and adherent surface particles on 5 different surface types of commercial BIs. Methods Surface particles from BIs of 5 surface types (n = 5/group), Biocell, Microcell, Siltex, Smooth, SmoothSilk, and Traditional-Smooth, were: (1) removed by a rinsing procedure and (2) removed with ultrapure adhesive carbon tabs. Particles were characterized (ASTM 1877-16) by scanning electron microscopy and energy-dispersive X-ray chemical analysis. Results Particles rinsed from Biocell, Microcell and Siltex were <1 μm in diameter whereas SmoothSilk and Traditional-Smooth surfaces had median sizes >1 μm (range, 0.4-2.7 μm). The total mass of particles rinsed from the surfaces indicated Biocell had >5-fold more particulate compared with all other implants, and >30-fold more than SmoothSilk or Traditional-Smooth implants (>100-fold more for post-rinse adhesion analysis). Energy-dispersive X-ray analysis indicated that the particulate material for Biocell, Microcell, and Siltex was silicone (>50%), whereas particulates from SmoothSilk and Traditional-Smooth implants were predominantly carbon-based polymers, eg, polycarbonate-urethane, consistent with packaging (and were detected on all implant types). Generally, SmoothSilk and Traditional-Smooth implant groups released >10-fold fewer particles than Biocell, Microcell, and Siltex surfaces. Pilot ex vivo tissue analysis supported these findings. Conclusions Particulate debris released from BIs are highly dependent on the type of implant surface and are a likely key determinant of in vivo performance. Level of Evidence: 5

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Surgery

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3