Comparing Propensity Score Methods Versus Traditional Regression Analysis for the Evaluation of Observational Data: A Case Study Evaluating the Treatment of Gram-Negative Bloodstream Infections

Author:

Amoah Joe1,Stuart Elizabeth A2,Cosgrove Sara E3,Harris Anthony D4,Han Jennifer H5,Lautenbach Ebbing6,Tamma Pranita D1

Affiliation:

1. The Johns Hopkins University School of Medicine, Department of Pediatrics, Baltimore, Maryland, USA

2. The Johns Hopkins Bloomberg School of Public Health, Department of Mental Health, Baltimore, Maryland, USA

3. The Johns Hopkins University School of Medicine, Department of Medicine, Baltimore, Maryland, USA

4. The University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, Maryland, USA

5. GlaxoSmithKline, Rockville, Maryland, USA

6. The University of Pennsylvania School of Medicine, Department of Medicine, Philadelphia, Pennsylvania, USA

Abstract

Abstract Background Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational data. However, there remains a general gap in understanding among clinicians on how to critically review observational studies that have incorporated these analytic techniques. Methods Using a cohort of 4967 unique patients with Enterobacterales bloodstream infections, we sought to answer the question “Does transitioning patients with gram-negative bloodstream infections from intravenous to oral therapy impact 30-day mortality?” We conducted separate analyses using traditional multivariable logistic regression, propensity score matching, propensity score inverse probability of treatment weighting, and propensity score stratification using this clinical question as a case study to guide the reader through (1) the pros and cons of each approach, (2) the general steps of each approach, and (3) the interpretation of the results of each approach. Results 2161 patients met eligibility criteria with 876 (41%) transitioned to oral therapy while 1285 (59%) remained on intravenous therapy. After repeating the analysis using the 4 aforementioned methods, we found that the odds ratios were broadly similar, ranging from 0.84–0.95. However, there were some relevant differences between the interpretations of the findings of each approach. Conclusions Propensity score analysis is overall a more favorable approach than traditional regression analysis when estimating causal effects using observational data. However, as with all analytic methods using observational data, residual confounding will remain; only variables that are measured can be accounted for. Moreover, propensity score analysis does not compensate for poor study design or questionable data accuracy.

Funder

National Institute of Allergy and Infectious Diseases

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3