In vivo dissection of the mouse tyrosine catabolic pathway with CRISPR-Cas9 identifies modifier genes affecting hereditary tyrosinemia type 1

Author:

Rivest Jean-François12ORCID,Carter Sophie12,Goupil Claudia12,Antérieux Pénélope12,Cyr Denis3,Ung Roth-Visal1,Dal Soglio Dorothée4,Mac-Way Fabrice1,Waters Paula J3ORCID,Paganelli Massimiliano4,Doyon Yannick12ORCID

Affiliation:

1. Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University , Québec City, QC G1V 4G2 , Canada

2. Université Laval Cancer Research Centre , Québec City, QC G1V 0A6 , Canada

3. Medical Genetics Service, Dept. Laboratory Medicine and Dept. Pediatrics, Centre Hospitalier Universitaire de Sherbrooke (CHUS) , Sherbrooke, QC J1H 5N4 , Canada

4. Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal , Montréal, QC H3T 1C5 , Canada

Abstract

Abstract Hereditary tyrosinemia type 1 is an autosomal recessive disorder caused by mutations (pathogenic variants) in fumarylacetoacetate hydrolase, an enzyme involved in tyrosine degradation. Its loss results in the accumulation of toxic metabolites that mainly affect the liver and kidneys and can lead to severe liver disease and liver cancer. Tyrosinemia type 1 has a global prevalence of approximately 1 in 100,000 births but can reach up to 1 in 1,500 births in some regions of Québec, Canada. Mutating functionally related “modifier’ genes (i.e. genes that, when mutated, affect the phenotypic impacts of mutations in other genes) is an emerging strategy for treating human genetic diseases. In vivo somatic genome editing in animal models of these diseases is a powerful means to identify modifier genes and fuel treatment development. In this study, we demonstrate that mutating additional enzymes in the tyrosine catabolic pathway through liver-specific genome editing can relieve or worsen the phenotypic severity of a murine model of tyrosinemia type 1. Neonatal gene delivery using recombinant adeno-associated viral vectors expressing Staphylococcus aureus Cas9 under the control of a liver-specific promoter led to efficient gene disruption and metabolic rewiring of the pathway, with systemic effects that were distinct from the phenotypes observed in whole-body knockout models. Our work illustrates the value of using in vivo genome editing in model organisms to study the direct effects of combining pathological mutations with modifier gene mutations in isogenic settings.

Funder

Canadian Institutes of Health Research

Banting Research Foundation

Fonds de la recherche du Québec-Santé

Fondation du Grand défi Pierre Lavoie

Groupe d’Aide aux Enfants Tyrosinémiques du Québec

Fondation du CHU de Québec—Université Laval

Publisher

Oxford University Press (OUP)

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3