Centromere-proximal suppression of meiotic crossovers in Drosophila is robust to changes in centromere number, repetitive DNA content, and centromere-clustering

Author:

Pazhayam Nila M1,Frazier Leah K2ORCID,Sekelsky Jeff134ORCID

Affiliation:

1. Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 , USA

2. SURE-REU Program in Biological Mechanisms, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 , USA

3. Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 , USA

4. Department of Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 , USA

Abstract

Abstract Accurate segregation of homologous chromosomes during meiosis depends on both the presence and the regulated placement of crossovers (COs). The centromere effect, or CO exclusion in pericentromeric regions of the chromosome, is a meiotic CO patterning phenomenon that helps prevent nondisjunction, thereby protecting against chromosomal disorders and other meiotic defects. Despite being identified nearly a century ago, the mechanisms behind this fundamental cellular process remain unknown, with most studies of the Drosophila centromere effect focusing on local influences of the centromere and pericentric heterochromatin. In this study, we sought to investigate whether dosage changes in centromere number and repetitive DNA content affect the strength of the centromere effect, using phenotypic recombination mapping. Additionally, we studied the effects of repetitive DNA function on centromere effect strength using satellite DNA–binding protein mutants displaying defective centromere-clustering in meiotic nuclei. Despite what previous studies suggest, our results show that the Drosophila centromere effect is robust to changes in centromere number, repetitive DNA content, as well as repetitive DNA function. Our study suggests that the centromere effect is unlikely to be spatially controlled, providing novel insight into the mechanisms behind the Drosophila centromere effect.

Funder

National Institute of General Medical Sciences

National Institute on Aging

National Science Foundation Division of Biological Infrastructure

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3