A theory of oligogenic adaptation of a quantitative trait

Author:

Höllinger Ilse1,Wölfl Benjamin123,Hermisson Joachim14

Affiliation:

1. Faculty of Mathematics, University of Vienna , Oskar-Morgenstern-Platz 1, 1090 Vienna , Austria

2. Vienna Graduate School of Population Genetics , University of Vienna and Veterinary Medical University of Vienna, Vienna, Austria

3. Vienna Doctoral School of Ecology and Evolution , University of Vienna, Vienna , Austria

4. Max Perutz Labs , Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna , Austria

Abstract

Abstract Rapid phenotypic adaptation is widespread in nature, but the underlying genetic dynamics remain controversial. Whereas population genetics envisages sequential beneficial substitutions, quantitative genetics assumes a collective response through subtle shifts in allele frequencies. This dichotomy of a monogenic and a highly polygenic view of adaptation raises the question of a middle ground, as well as the factors controlling the transition. Here, we consider an additive quantitative trait with equal locus effects under Gaussian stabilizing selection that adapts to a new trait optimum after an environmental change. We present an analytical framework based on Yule branching processes to describe how phenotypic adaptation is achieved by collective changes in allele frequencies at the underlying loci. In particular, we derive an approximation for the joint allele-frequency distribution conditioned on the trait mean as a comprehensive descriptor of the adaptive architecture. Depending on the model parameters, this architecture reproduces the well-known patterns of sequential, monogenic sweeps, or of subtle, polygenic frequency shifts. Between these endpoints, we observe oligogenic architecture types that exhibit characteristic patterns of partial sweeps. We find that a single compound parameter, the population-scaled background mutation rate Θbg, is the most important predictor of the type of adaptation, while selection strength, the number of loci in the genetic basis, and linkage only play a minor role.

Funder

Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3