Spatial and Temporal Coevolution of N2 Neuraminidase and H1 and H3 Hemagglutinin Genes of Influenza A Virus in United States Swine

Author:

Zeller Michael A12ORCID,Chang Jennifer3ORCID,Vincent Amy L3,Gauger Phillip C1,Anderson Tavis K3ORCID

Affiliation:

1. Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA

2. Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA

3. Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA

Abstract

Abstract The neuraminidase (NA) and hemagglutinin (HA) are essential surface glycoproteins of influenza A virus (IAV). In this study, the evolution of subtype N2 NA paired with H1 and H3 subtype HA in swine was evaluated to understand if genetic diversity of HA and NA were linked. Using time-scaled Bayesian phylodynamic analyses, the relationships of paired swine N2 with H1 or H3 from 2009 to 2018 were evaluated. These data demonstrated increased relative genetic diversity within the major N2 clades circulating in swine in the United States (N2.1998 between 2014-2017 and N2.2002 between 2010-2016). Preferential pairing was observed among specific NA and HA genetic clades. Gene reassortment between cocirculating influenza A strains resulted in novel pairings that persisted. The changes of genetic diversity in the NA gene were quantified using Bayesian phylodynamic analyses and increases in diversity were observed subsequent to novel NA-HA reassortment events. The rate of evolution among NA-N2 clades and HA-H1 and HA-H3 clades were similar. Bayesian phylodynamic analyses demonstrated strong spatial patterns in N2 genetic diversity, but frequent interstate movement of rare N2 clades provided opportunity for reassortment and emergence of new N2-HA pairings. The frequent regional movement of pigs and their influenza viruses is an explanation for the documented patterns of reassortment and subsequent changes in gene diversity. The reassortment and evolution of NA and linked HA evolution may result in antigenic drift of both major surface glycoproteins, reducing vaccine efficacy, with subsequent impact on animal health.

Funder

National Institute of Allergy and Infectious Diseases

Oak Ridge Institute for Science and Education

Agricultural Research Service

Iowa State University

Publisher

Oxford University Press (OUP)

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3