CCPA: cloud-based, self-learning modules for consensus pathway analysis using GO, KEGG and Reactome

Author:

Nguyen Ha1,Pham Van-Dung1,Nguyen Hung1,Tran Bang2,Petereit Juli3,Nguyen Tin1

Affiliation:

1. Auburn University Department of Computer Science and Software Engineering, , AL 36849, USA

2. California State University, Sacramento Department of Computer Science, , CA 95819, USA

3. University of Nevada, Reno Nevada Bioinformatics Center, , NV 89557, USA

Abstract

Abstract This manuscript describes the development of a resource module that is part of a learning platform named ‘NIGMS Sandbox for Cloud-based Learning’ (https://github.com/NIGMS/NIGMS-Sandbox). The module delivers learning materials on Cloud-based Consensus Pathway Analysis in an interactive format that uses appropriate cloud resources for data access and analyses. Pathway analysis is important because it allows us to gain insights into biological mechanisms underlying conditions. But the availability of many pathway analysis methods, the requirement of coding skills, and the focus of current tools on only a few species all make it very difficult for biomedical researchers to self-learn and perform pathway analysis efficiently. Furthermore, there is a lack of tools that allow researchers to compare analysis results obtained from different experiments and different analysis methods to find consensus results. To address these challenges, we have designed a cloud-based, self-learning module that provides consensus results among established, state-of-the-art pathway analysis techniques to provide students and researchers with necessary training and example materials. The training module consists of five Jupyter Notebooks that provide complete tutorials for the following tasks: (i) process expression data, (ii) perform differential analysis, visualize and compare the results obtained from four differential analysis methods (limma, t-test, edgeR, DESeq2), (iii) process three pathway databases (GO, KEGG and Reactome), (iv) perform pathway analysis using eight methods (ORA, CAMERA, KS test, Wilcoxon test, FGSEA, GSA, SAFE and PADOG) and (v) combine results of multiple analyses. We also provide examples, source code, explanations and instructional videos for trainees to complete each Jupyter Notebook. The module supports the analysis for many model (e.g. human, mouse, fruit fly, zebra fish) and non-model species. The module is publicly available at https://github.com/NIGMS/Consensus-Pathway-Analysis-in-the-Cloud. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.

Funder

National Science Foundation

National Aeronautics and Space Administration

National Institute of General Medical Sciences

National Cancer Institute

Publisher

Oxford University Press (OUP)

Reference57 articles.

1. NIGMS Sandbox: A Learning Platform toward Democratizing Cloud Computing for Biomedical Research;Lei;Brief Bioinform

2. A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes;Dutta;Br J Cancer,2012

3. Identification of a subtype of hepatocellular carcinoma with poor prognosis based on expression of genes within the glucose metabolic pathway;Zhang;Cancer,2019

4. Companion biomarkers: paving the pathway to personalized treatment for cancer;Duffy;Clin Chem,2013

5. A personalized treatment for lung cancer: molecular pathways, targeted therapies, and genomic characterization;Hensing;Systems Analysis of Human Multigene Disorders,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3