Comparative analysis of hydraulics and water-use strategies in shrubs under controlled drought conditions for ecosystem restoration

Author:

Cheng Li12,Yang Hongling123,Zhang Hongxia124,Li Weibin5ORCID,Liu Xinping123,Lu Jiannan123,Li Yulin123

Affiliation:

1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences , Lanzhou 730000 ,

2. University of Chinese Academy of Sciences , Beijing 100049 ,

3. Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences , Tongliao 028300 ,

4. Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences , Lanzhou 730000 ,

5. State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University , Lanzhou 730020 ,

Abstract

Abstract During the restoration of degraded ecosystems, different shrub species often segregate along environmental water gradients. However, the physiological mechanisms driving this segregation remain unclear. To address this gap, we conducted a drought stress experiment (70%–80% field water holding capacity, CK; 40%–50% field water holding capacity, MD; 20%–30% field water holding capacity, SD) to explore the physiological mechanisms driving the dominance of different shrub species at various stages of ecosystem restoration. Salix gordejevii, a species dominant in the early stages of restoration with high water availability, and Caragana microphylla, a species dominant in the later stages under low water availability, were studied. The results showed that the living state index (LSI) of S. gordejevii was significantly lower than that of C. microphylla under drought stress (P < 0.05). Differences in plant hydraulics and water-use strategies explained how these species adapt to varying soil moisture conditions. Salix gordejevii employed a proactive water-use strategy with lower water-use efficiency (WUE) and reduced resistance to xylem embolism (xylem water potentials corresponding to 50% loss of conductivity, P50), making it better suited to environments with more abundant water. In contrast, C. microphylla adopted a conservative water-use strategy. This strategy was characterized by increased WUE and enhanced resistance to drought-induced xylem embolism, which allowed it to thrive under more drought-prone conditions. Importantly, hydraulic efficiency (Kleaf, Ks and K1) emerged as the primary determinant of living state in both S. gordejevii (47.30%) and C. microphylla (62.20%). The lower embolism resistance of S. gordejevii (P50 = 1.3 MPa) made it more susceptible to xylem cavitation, leading to a decline in hydraulic efficiency under SD. In contrast, C. microphylla’s higher embolism resistance (P50 = 2.3 MPa) enabled it to maintain stable hydraulic conductance across all drought treatments. These differences in hydraulic efficiency, driven by xylem embolism resistance, were key factors influencing shifts in shrub dominance during ecosystem restoration. These findings provide a physiological explanation for the replacement of shrub species during ecosystem restoration, where soil moisture is the main limiting factor.

Funder

National Natural Science Foundation of China

Key Science and Technology Project of Inner Mongolia Autonomous Region

Science and Technology Programs of Gansu Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3