The Optimal Layer for Breast Augmentation in an Autologous Fat Grafting Murine Model

Author:

Zhang Ziang,Qin Zijin,Li Yu,Long Jie,Chen Guo,Gao Botao,Zhou Xuhua,Zhang Yuge,Song Baoqiang

Abstract

Abstract Background Fat grafting is an effective procedure for breast augmentation, but the variations in this technique result in unpredictable fat retention. Therefore, animal models are needed to simulate the operation and the optimal layer for fat retention. Objectives An autologous fat grafting murine model for breast augmentation was built to detect a new layer for fat grafting in the chest. Methods The left side of the female rat inguinal fat flap was harvested, dissected into small pieces, and autotransplanted into 3 different layers of the breast. Retention rate and hematoxylin and eosin (H&E) staining were measured at 1, 4, 8 12, and 16 weeks. Immunofluorescence staining was utilized to detect adipocytes and endothelial cells, and immunohistochemistry was conducted to evaluate the expression of integrins β1 and α6. Results The volume of fat grafts slightly grew in the intramuscular and submuscular layers at Week 4. Retention rates in the subcutaneous layer and submuscular layer were significantly higher than the intramuscular layer at Week 16. H&E staining showed that oil cysts existed in the subcutaneous layer throughout the 16 weeks. At the terminal time point, well-vascularized mature adipose structures were observed in intramuscular and submuscular layers, with smaller adipocytes in intramuscular layers. Immunohistochemistry analysis showed that integrin β1 was identically expressed in every adipocyte in all the layers, whereas integrin α6 selectively expressed in bigger adipocytes in the intramuscular layer. The expression intensities of integrin β1 and α6 were significantly higher in the intramuscular layer than in the subcutaneous and submuscular layers. Conclusions The angiogenic and moderate mechanical environment makes the submuscular layer the optimal layer for fat retention.

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3