Leaf acclimation to soil flooding and light availability underlies photosynthetic capacity of Lindera melissifolia, an endangered shrub of bottomland forests in the Mississippi Alluvial Valley, USA

Author:

Gardiner Emile S1ORCID,Leininger Theodor D1ORCID,Connor Kristina F2,Devall Margaret S2,Hamel Paul B2,Schiff Nathan M2,Wilson A Dan2ORCID

Affiliation:

1. USDA Forest Service Center for Bottomland Hardwoods Research, Southern Research Station, , 432 Stoneville Road, Stoneville, MS 38776, USA

2. USDA Forest Service Formerly with the Center for Bottomland Hardwoods Research, Southern Research Station, , 432 Stoneville Road, Stoneville, MS 38776, USA

Abstract

Abstract Lindera melissifolia is an endangered shrub indigenous to the broadleaf forest of the Mississippi Alluvial Valley (MAV). In this region, extant colonies of the species are found in periodically ponded habitats where a diversity of broadleaf trees can form well-developed overstory and sub-canopies—these habitat characteristics suggest that soil flooding and light availability are primary drivers of L. melissifolia ecophysiology. To understand how these two factors affect its photosynthetic capacity, we quantified leaf characteristics and photosynthetic response of plants grown in a large-scaled, field setting of three distinct soil flooding levels (no flood, 0 day; short-term flood, 45 days; and extended flood, 90 days) each containing three distinct light availability levels (high light, 30% shade cloth; intermediate light, 63% shade cloth; and low light, 95% shade cloth). Lindera melissifolia leaves showed marked plasticity to interacting effects of flooding and light with lamina mass per unit area (Lm/a) varying 78% and total nitrogen content per unit area (Na) varying 63% from the maximum. Photosynthetic capacity (A1800-a) ranged 123% increasing linearly with Na from low to high light. Extended flooding decreased the slope of this relationship 99% through a reduction in N availability and metabolic depression of A1800-a relative to Na. However, neither soil flooding nor light imposed an additive limitation on photosynthetic capacity when the other factor was at its most stressful level, and the A1800-a–Na relationship for plants that experienced short-term flooding suggested post-flood acclimation in photosynthetic capacity was approaching the maximal level under respective light environments. Our findings provide evidence for wide plasticity and acclimation potential of L. melissifolia photosynthetic capacity, which supports active habitat management, such as manipulation of stand structure for improved understory light environments, to benefit long-term conservation of the species in the MAV.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3