Functional characteristics of DNA N6-methyladenine modification based on long-read sequencing in pancreatic cancer

Author:

Zhou Dianshuang1ORCID,Guo Shiwei2,Wang Yangyang1,Zhao Jiyun1,Liu Honghao1,Zhou Feiyang1,Huang Yan1ORCID,Gu Yue1,Jin Gang2,Zhang Yan134ORCID

Affiliation:

1. Harbin Institute of Technology School of Life Science and Technology, Computational Biology Research Center, , Harbin 150006 , China

2. Second Military Medical University (Naval Medical University) Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, , Shanghai 200433 , China

3. Guangzhou Medical University State Key Laboratory of Respiratory Disease, , Guangzhou , China

4. Qiqihar Medical University College of Pathology, , Qiqihar 161042 , China

Abstract

Abstract Abnormalities of DNA modifications are closely related to the pathogenesis and prognosis of pancreatic cancer. The development of third-generation sequencing technology has brought opportunities for the study of new epigenetic modification in cancer. Here, we screened the N6-methyladenine (6mA) and 5-methylcytosine (5mC) modification in pancreatic cancer based on Oxford Nanopore Technologies sequencing. The 6mA levels were lower compared with 5mC and upregulated in pancreatic cancer. We developed a novel method to define differentially methylated deficient region (DMDR), which overlapped 1319 protein-coding genes in pancreatic cancer. Genes screened by DMDRs were more significantly enriched in the cancer genes compared with the traditional differential methylation method (P < 0.001 versus P = 0.21, hypergeometric test). We then identified a survival-related signature based on DMDRs (DMDRSig) that stratified patients into high- and low-risk groups. Functional enrichment analysis indicated that 891 genes were closely related to alternative splicing. Multi-omics data from the cancer genome atlas showed that these genes were frequently altered in cancer samples. Survival analysis indicated that seven genes with high expression (ADAM9, ADAM10, EPS8, FAM83A, FAM111B, LAMA3 and TES) were significantly associated with poor prognosis. In addition, the distinction for pancreatic cancer subtypes was determined using 46 subtype-specific genes and unsupervised clustering. Overall, our study is the first to explore the molecular characteristics of 6mA modifications in pancreatic cancer, indicating that 6mA has the potential to be a target for future clinical treatment.

Funder

Heilongjiang Postdoctoral Fund

Applied Technology Research and Development Project of Heilongjiang

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emerging trends in clinical cancer genomic research;Cancer Biology & Medicine;2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3