Computational approaches for direct cell reprogramming: from the bulk omics era to the single cell era

Author:

Tran Andy1232ORCID,Yang Pengyi12324ORCID,Yang Jean Y H12324,Ormerod John12

Affiliation:

1. School of Mathematics and Statistics , , NSW , Australia

2. The University of Sydney , , NSW , Australia

3. Charles Perkins Centre , , NSW , Australia

4. Laboratory of Data Discovery for Health Limited (D24H), Science Park , Hong Kong SAR , China

Abstract

Abstract Recent advances in direct cell reprogramming have made possible the conversion of one cell type to another cell type, offering a potential cell-based treatment to many major diseases. Despite much attention, substantial roadblocks remain including the inefficiency in the proportion of reprogrammed cells of current experiments, and the requirement of a significant amount of time and resources. To this end, several computational algorithms have been developed with the goal of guiding the hypotheses to be experimentally validated. These approaches can be broadly categorized into two main types: transcription factor identification methods which aim to identify candidate transcription factors for a desired cell conversion, and transcription factor perturbation methods which aim to simulate the effect of a transcription factor perturbation on a cell state. The transcription factor perturbation methods can be broken down into Boolean networks, dynamical systems and regression models. We summarize the contributions and limitations of each method and discuss the innovation that single cell technologies are bringing to these approaches and we provide a perspective on the future direction of this field.

Funder

National Health and Medical Research Council Investigator

Australian Research Council Discovery Project

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3