Antibiotic resistance, bacterial transmission and improved prediction of bacterial infection in patients with antibody deficiency

Author:

Rofael Sylvia12,Leboreiro Babe Clara1,Davrandi Mehmet1,Kondratiuk Alexandra L3,Cleaver Leanne4,Ahmed Naseem1,Atkinson Claire35,McHugh Timothy1,Lowe David M36ORCID

Affiliation:

1. Centre for Clinical Microbiology, University College London , Royal Free Campus, Pond Street , London, UK

2. Faculty of Pharmacy, University of Alexandria , Alexandria , Egypt

3. Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London , Pears Building, Rowland Hill Street , London, UK

4. Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London , London , UK

5. Cancer Biology and Therapy Research Group, Divisionof Human Sciences, School of Applied Sciences, London South Bank University , London , UK

6. Department of Clinical Immunology, Royal Free London NHS Foundation Trust , Pond Street , London, UK

Abstract

Abstract Background Antibody-deficient patients are at high risk of respiratory tract infections. Many therefore receive antibiotic prophylaxis and have access to antibiotics for self-administration in the event of breakthrough infections, which may increase antimicrobial resistance (AMR). Objectives To understand AMR in the respiratory tract of patients with antibody deficiency. Methods Sputum samples were collected from antibody-deficient patients in a cross-sectional and prospective study; bacteriology culture, 16S rRNA profiling and PCR detecting macrolide resistance genes were performed. Bacterial isolates were identified using MALDI-TOF, antimicrobial susceptibility was determined by disc diffusion and WGS of selected isolates was done using Illumina NextSeq with analysis for resistome and potential cross-transmission. Neutrophil elastase was measured by a ProteaseTag immunoassay. Results Three hundred and forty-three bacterial isolates from sputum of 43 patients were tested. Macrolide and tetracycline resistance were common (82% and 35% of isolates). erm(B) and mef(A) were the most frequent determinants of macrolide resistance. WGS revealed viridans streptococci as the source of AMR genes, of which 23% also carried conjugative plasmids linked with AMR genes and other mobile genetic elements. Phylogenetic analysis of Haemophilus influenzae isolates suggested possible transmission between patients attending clinic. In the prospective study, a negative correlation between sputum neutrophil elastase concentration and Shannon entropy α-diversity (Spearman’s ρ = −0.306, P = 0.005) and a positive relationship with Berger–Parker dominance index (ρ = 0.502, P < 0.001) were found. Similar relationships were noted for the change in elastase concentration between consecutive samples, increases in elastase associating with reduced α-diversity. Conclusions Measures to limit antibiotic usage and spread of AMR should be implemented in immunodeficiency clinics. Sputum neutrophil elastase may be a useful marker to guide use of antibiotics for respiratory infection.

Funder

British Society for Antimicrobial Chemotherapy

Publisher

Oxford University Press (OUP)

Subject

Microbiology (medical),Infectious Diseases,Immunology and Allergy,Microbiology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3