Machine-learning-based prediction of survival and mitral regurgitation recurrence in patients undergoing mitral valve repair

Author:

Kang Yoonjin1ORCID,Sohn Suk Ho1,Choi Jae Woong1ORCID,Hwang Ho Young1ORCID,Kim Kyung Hwan1ORCID

Affiliation:

1. Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital , Seoul, Republic of Korea

Abstract

Abstract OBJECTIVES This study was conducted to assess long-term clinical outcomes after mitral valve repair using machine-learning techniques. METHODS We retrospectively evaluated 436 consecutive patients (mean age: 54.7 ± 15.4; 235 males) who underwent mitral valve repair between January 2000 and December 2017. Actuarial survival and freedom from significant (≥ moderate) mitral regurgitation (MR) were clinical end points. To evaluate the independent risk factors, random survival forest (RSF), extreme gradient boost (XGBoost), support vector machine, Cox proportional hazards model and general linear models with elastic net regularization were used. Concordance indices (C-indices) of each model were estimated. RESULTS The operative mortality was 0.9% (N = 4). Reoperation was required in 15 patients (3.5%). In terms of C-index, the overall performance of the XGBoost (C-index 0.806) and RSF models (C-index 0.814) was better than that of the Cox model (C-index 0.733) in overall survival. For the recurrent MR, the C-index for XGBoost was 0.718, which was the highest among the 5 models. Compared to the Cox model (C-index 0.545), the C-indices of the XGBoost (C-index 0.718) and RSF models (C-index 0.692) were higher. CONCLUSIONS Machine-learning techniques can be a useful tool for both prediction and interpretation in the survival and recurrent MR. From the machine-learning techniques examined here, the long-term clinical outcomes of mitral valve repair were excellent. The complexity of MV increased the risk of late mitral valve-related reoperation.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3