Poor maternal diet during gestation alters offspring muscle proteome in sheep

Author:

Reed Sarah A1ORCID,Balsbaugh Jeremy2,Li Xiaomeng3,Moore Timothy E4,Jones Amanda K5,Pillai Sambhu M6,Hoffman Maria L7,Govoni Kristen E1ORCID,Zinn Steven A1

Affiliation:

1. Department of Animal Science, University of Connecticut , Storrs, CT 06269 , USA

2. Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut , Storrs, CT 06269 , USA

3. Department of Statistics, University of Connecticut , Storrs, CT 06269 , USA

4. Statistical Consulting Services, Center for Open Research Resources & Equipment, University of Connecticut , Storrs, CT 06269 , USA

5. Department of Cardiometabolic Research, Boehringer Ingelheim , Ridgefield, CT 06879 , USA

6. Division of Endocrinology and Metabolism, Georgetown University , Washington, D.C. 20057 , USA

7. Department of Fisheries, Animal & Veterinary Science, University of Rhode Island , Kingston, RI 02881 , USA

Abstract

Abstract Poor maternal nutrition during gestation can result in reduced offspring muscle growth and altered muscle metabolism. We hypothesized that over- or restricted-nutrition during gestation would alter the longissimus dorsi muscle (LM) proteome of offspring. Pregnant ewes were fed 60% (restricted), 100% (control), or 140% (over) of National Research Council requirements for total digestible nutrients from day 30 of gestation until parturition. Fetal (RES, CON, OVER) LM were collected at days 90 and 135 of gestation, or from offspring within 24 h of birth. Sarcoplasmic proteins were isolated, trypsin digested, and subjected to multiplexed, label-based quantitative mass spectrometry analysis integrating tandem mass tag technology. Differential expression of proteins was identified by ANOVA followed by Tukey’s HSD post hoc tests, and regularized regression via the elastic net. Significance was set at P < 0.05. Over-represented pathways containing differentially expressed proteins were identified by Reactome and included metabolism of proteins, immune system, cellular response to stress/external stimuli, developmental biology, and infectious disease. As a result of maternal diet, a total of 312 proteins were differentially expressed (day 90 = 89 proteins; day 135 = 115 proteins; birth = 131 proteins). Expression of eukaryotic initiation factor (EIF) 2S3, EIF3L, and EIF4G2 was lower in OVER fetuses at day 90 of gestation (P < 0.05). Calcineurin A and mitogen-activated protein kinase 1 were greater in RES fetuses at day 90 (P < 0.04). At day 135 of gestation, pyruvate kinase and lactate dehydrogenase A expression were greater in OVER fetuses than CON (P < 0.04). Thioredoxin expression was greater in RES fetuses relative to CON at day 135 (P = 0.05). At birth, proteins of the COP9 signalosome complex were greater in RES offspring relative to OVER (P < 0.05). Together, these data indicate that protein degradation and synthesis, metabolism, and oxidative stress are altered in a time and diet-specific manner, which may contribute to the phenotypic and metabolic changes observed during fetal development and postnatal growth.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3