Di(2-ethylhexyl) phthalate mediates oxidative stress and activates p38MAPK/NF-kB to exacerbate diabetes-induced kidney injury in vitro and in vivo models

Author:

Ding Wen-Jie12,Huang Shou-Lin12,Huang Song12,Xu Wei-Ping34,Wei Wei12

Affiliation:

1. Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine , Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, , Hefei 230032, Anhui, China

2. Institute of Clinical Pharmacology of Anhui Medical University , Key Laboratory of Anti-Inflammatory and Immune Medicine of Education Ministry, , Hefei 230032, Anhui, China

3. The First Affiliated Hospital of USTC , Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Division of Life Sciences and Medicine, , Hefei 230001, Anhui, China

4. University of Science and Technology of China , Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Division of Life Sciences and Medicine, , Hefei 230001, Anhui, China

Abstract

Abstract Plasticizer di(2-ethylhexyl) phthalate (DEHP) is employed to make polyethylene polymers. Some studies in epidemiology and toxicology have shown that DEHP exposure over an extended period may be hazardous to the body, including nephrotoxicity, and aggravate kidney damage in the context of underlying disease. However, studies on the toxicity of DEHP in diabetes-induced kidney injury have been rarely reported. Using a high-fat diet (HFD) and streptozotocin (STZ, 35 mg/kg)-induced kidney injury in mice exposed to various daily DEHP dosages, we explored the impacts of DEHP on diabetes-induced kidney injury. We discovered that DEHP exposure significantly promoted the renal inflammatory response and oxidative stress in mice, with increased P-p38 and P-p65 protein levels and exacerbated the loss of podocin. The same findings were observed in vitro after stimulation of podocytes with high glucose (30 mmol/L) and exposure to DEHP. Our results suggest that DEHP exacerbates diabetes-induced kidney injury by mediating oxidative stress and activating p38MAPK/NF-κB.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3