Tannic acid ameliorates the hazards effect of beryllium induced neuro-alterations and oxidative stress in adult male rats

Author:

Rezk Mohamed M12ORCID

Affiliation:

1. Isotopes Department , , P.O. Box 530, El Maadi, Cairo 11936 , Egypt

2. Nuclear Materials Authority , , P.O. Box 530, El Maadi, Cairo 11936 , Egypt

Abstract

Abstract Background Tannic acid (TA) is one of the most consumed and famous polyphenols with a widespread attention in the medical field according to its unique structural, pharmaceutical, physicochemical, antioxidant and other biological features. A rare study was conducted on the hazard effect of beryllium (Be) on the central nervous system. Aims This study aims to show the ability of beryllium to cross the blood brain barrier. Demonstrate the effect of beryllium and tannic acid separately or with each other on brain ions (Na+, K+, Ca++) and on norepinephrine, dopamine, serotonin, finally on the glutathione and malondialdehyde. Animals grouping Seventy-two rats were divided into four groups as control, Be, TA, and Be+TA where Be was injected intraperitoneally as 1 mg/Kg b. wt, TA was orally administrated as 5% in aquas solution. Results The administration of beryllium showed its ability to cross the blood brain barrier and accumulated in cortex > cerebellum>hypothalamus also, a significant increase in Na+, Ca++ cooperated with a significant decrease in K+ ions content was observed. Norepinephrine, dopamine, and serotonin showed a general significant decrease in their content joined with a significant decrease in glutathione (GSH) and elevation in malondialdehydes (MDA) because of Be intoxication. On the other hands the daily oral administration of tannic acid showed a general significant decrease in Na+, Ca++ ions content parallel with a significant increase K+ also, a non-significant change in the three measured neurotransmitters was noticed. Conclusion Tannic acid showed a mitigation effect against Be intoxication which may regarded to the tannic acid antioxidant, chelating effect.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3