Molecular mechanism of mice gastric oxidative damage induced by nanoparticulate titanium dioxide

Author:

Ji Jianhui12,Zhou Yingjun12,Hong Fashui12,Ze Yuguan3,Fan Dongxue12,Zhang Xingxiang12

Affiliation:

1. Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an 223300, China

2. School of Life Sciences, Huaiyin Normal University, Huai’an 223300, China

3. School of Basic Medicine and Biological Sciences of Soochow University, Suzhou 215123, China

Abstract

Abstract Background Nanoparticulate titanium dioxide (Nano-TiO2) has been widely used in food industry, and it has been demonstrated to have adverse effects on mice and human stomach, but its mechanism is rarely concerned. The aim of this study is to determine the effects of nano-TiO2 on the stomach and confirm the role of oxidative stress and apoptosis in the mice gastric damage caused by nano-TiO2, as well as its molecular mechanisms. Methods Mice were continuously exposed to nano-TiO2 with 1.25, 2.5 and 5 mg/kg bw by intragastric administration for 9 months in the present study. The ultrastructure, levels of reactive oxygen species (ROS) and peroxides, activities of antioxidant enzymes and mitochondria-related enzymes, ATP contents as well as apoptosis-related factors expression in mice stomach were examined. Results Oxidative stress, apoptosis and nano-TiO2 aggregation were found in gastric mucosal smooth muscle cells after nano-TiO2 exposure. Nano-TiO2 exposure also resulted in the over-production of ROS and peroxides, decrease of ATP production and activities of antioxidant enzymes and mitochondria-related ATPases, upregulation of apoptosis-related factors including γH2AX, Cyt c, caspase 3, and p-JNK expression, and down-regulation of Bcl-2 expression in mice stomach. Conclusions The gastric toxicity of mice induced by chronic exposure to low dose nano-TiO2 may be associated with oxidative stress and mitochondria-mediated apoptosis in mice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3