Anticancer activity of zinc oxide nanoparticles on prostate and colon cancer cell line

Author:

Motafeghi Farzaneh1234ORCID,Mortazavi Parham56,Shokrzadeh Mohammad34

Affiliation:

1. Reproductive Endocrinology Research Center , Research Institute for Endocrine Sciences and Metabolism, , Tehran , Iran

2. Shahid Beheshti University of Medical Sciences , Research Institute for Endocrine Sciences and Metabolism, , Tehran , Iran

3. Department of Pharmacology and Toxicology , Faculty of Pharmacy, , Sari , Iran

4. Mazandaran University of Medical Sciences , Faculty of Pharmacy, , Sari , Iran

5. Isfahan Cardiovascular Research Center , Cardiovascular Research Institute, , Isfahan 1583-88994 , Iran

6. Isfahan University of Medical Sciences , Cardiovascular Research Institute, , Isfahan 1583-88994 , Iran

Abstract

Abstract Introduction Considering the numerous drug resistance in cancer and the advancement of science in nanomedicines, it was decided to compare the effectiveness of zinc oxide nanoparticles in colon and prostate cell lines. Considering the importance of factors and Oxidative stress pathways in cancer prevention, the aim of the study is based on oxidative stress mechanisms. Methodes In order to evaluate the effects of zinc oxide nanoparticles on colon and prostate cell lines, oxidative stress factors ROS, MDA, and GSH and mitochondrial function were evaluated. The data was analyzed with Prism v8 software, and the significance level was considered to be P < 0.05. Results The results showed that nanoparticles induce ROS and reduce intracellular glutathione by destroying and disrupting mitochondrial function, and by increasing ROS production, damage to the lipid membrane and an increase in MDA were also evident. This effect was dose-dependent and the greatest at a concentration of 25 μg/mL. Also, ZnO nanoparticles performed better in the HT29 cell line than in the PC3 cell line. Conclusion This study showed that exposure of HT29 and PC3 cancer cells to zinc oxide nanoparticles at different concentrations inhibited growth by cytotoxic effects.

Funder

Mazandaran University of Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3