Prevention of methylmercury-triggered ROS-mediated impairment of embryo development by co-culture with adult adipose-derived mesenchymal stem cells

Author:

Lee Cheng-Kai1,Wang Fu-Ting2,Huang Chien-Hsun3,Chan Wen-Hsiung4ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare , Zhongshan Road, Taoyuan District, Taoyuan City 33004 , Taiwan

2. Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital , Section 2, Shipai Road, Beitou District, Taipei City 11217 , Taiwan

3. Hungchi Gene IVF Center , Daxing West Road, Taoyuan District, Taoyuan City 330012 , Taiwan

4. Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University , Zhongbei Road, Zhongli District, Taoyuan City 32023 , Taiwan

Abstract

Abstract Methylmercury (MeHg) is a potent toxin that exerts deleterious effects on human health via environmental contamination. Significant effects of MeHg on neuronal development in embryogenesis have been reported. Recently, our group demonstrated that MeHg exerts toxic effects on pre- and post-implantation embryonic development processes from zygote to blastocyst stage. Our results showed that MeHg impairs embryo development by induction of apoptosis through reactive oxygen species (ROS) generation that triggers caspase-3 cleavage and activation, which, in turn, stimulates p21-activated kinase 2 (PAK2) activity. Importantly, ROS were identified as a key upstream regulator of apoptotic events in MeHg-treated blastocysts. Data from the current study further confirmed that MeHg exerts hazardous effects on cell proliferation, apoptosis, implantation, and pre- and post-implantation embryo development. Notably, MeHg-induced injury was markedly prevented by co-culture with adipose-derived mesenchymal stem cells (ADMSCs) in vitro. Furthermore, ADMSC injection significantly reduced MeHg-mediated deleterious effects on embryo, placenta, and fetal development in vivo. Further investigation of the regulatory mechanisms by which co-cultured ADMSCs could prevent MeHg-induced impairment of embryo development revealed that ADMSCs effectively reduced ROS generation and its subsequent downstream apoptotic events, including loss of mitochondrial membrane potential and activation of caspase-3 and PAK2. The collective findings indicate that co-culture with mesenchymal stem cells (MSCs) or utilization of MSC-derived cell-conditioned medium offers an effective potential therapeutic strategy to prevent impairment of embryo development by MeHg.

Funder

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3