Protective effect of cilostazol and verapamil against thioacetamide-induced hepatotoxicity in rats may involve Nrf2/GSK-3β/NF-κB signaling pathway

Author:

Elsisi Alaa E1,Elmarhoumy Esraa H1ORCID,Osman Enass Y1

Affiliation:

1. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University , Tanta, Egypt

Abstract

Abstract Background Verapamil (VER) and cilostazol (Cilo) are mostly used as cardiovascular drugs; they have beneficial effects on different organs toxicities. Aim we investigated whether the Nuclear factor erythroid 2-related factor 2 (Nrf2), Glycogen synthase kinase-3β (GSK-3β), and Nuclear factor-kappa B (NF-κB) pathway involved in the protective role of these drugs against Thioacetamide (TAA) induced hepatotoxicity. Method male rats were randomized divided into five groups, each group (n = 10): control, TAA, VER+TAA, Cilo+TAA, and VER+Cilo+TAA groups. Hepatotoxicity induced in rats by TAA injection once on the 7th day of the experiment. Results TAA-induced hepatotoxicity indicated by a significant elevated in serum markers (Alanine aminotransferases (ALT), Aspartate aminotransferases (AST), and bilirubin), oxidative stress markers (Malondialdehyde (MDA), and Nitric oxide (NO)), and protein levels markers (NF-κB, and S100 calcium-binding protein A4 (S100A4)). Also, TAA decreased Nrf2, and increased GSK-3β genes expression. Histopathological alterations in the liver also appeared as a response to TAA injection. On the other hand VER and/or Cilo significantly prevented TAA-induced hepatotoxicity in rats through significantly decreased in ALT, AST, bilirubin, MDA, NO, NF-κB, and S100A4 protein levels. Also, they increased Nrf2 and decreased GSK-3β genes expression which caused improvement in the histopathological changes of the liver. Conclusion the addition of verapamil to cilostazol potentiated the hepatoprotective activity, and inhibited the progression of hepatotoxicity caused by TAA through the Nrf2/GSK-3β/NF-κBpathway and their activity on oxidative stress, inflammation, and NF-κB protein expression.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3