HM-chromanone alleviates hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance

Author:

Lim Ha J1,Park Jae E1,Han Ji S1ORCID

Affiliation:

1. Pusan National University Department of Food Science and Nutrition & Kimchi Research Institute, , Busan 46241 , The Republic of Korea

Abstract

Abstract This study was designed to investigate whether (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone alleviates inflammation and hyperglycemia in mice with endotoxin-induced insulin resistance. (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone (10, 30, and 50 mg/kg bodyweight) was orally pre-administered to C57BL/6 J mice. An hour later, lipopolysaccharides (20 mg/kg bodyweight) was administered intraperitoneally to induce endotoxins. Blood samples were collected from the tail vein of the mice every 0, 30, and 90 min. The results indicated that (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone effectively regulated blood glucose levels in mice with endotoxin-induced insulin resistance. Furthermore, (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone significantly reduced the phosphorylation of mammalian target of rapamycin, ribosomal protein S6 kinase 1, and protein kinase C θ. Additionally, (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone suppressed the phosphorylation of c-Jun-NH2-terminal kinase and IkB kinase β, thereby decreasing the phosphorylation of inhibitor of nuclear factor kappa-B α and activating the nuclear factor-κB and activator protein-1 in the liver. Therefore, the expression of tumor necrosis factor-α, interleukin-6, and interleukin-1β was significantly reduced by suppressing the nuclear factor-κB and activator protein 1 activity. Suppression of mammalian target of rapamycin, S6 kinase 1, protein kinase C θ, c-Jun-NH2-terminal kinase, and IkB kinase β also ameliorated insulin resistance by reducing the phosphorylation of insulin receptor substrate-1 serine 307, thereby decreasing hyperglycemia. These findings suggest that (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone can alleviate hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance.

Funder

Ministry of Science, ICT & Future Planning

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3