Gallic acid: a polyphenolic compound potentiates the therapeutic efficacy of cisplatin in human breast cancer cells

Author:

Shruthi S1ORCID,Mumbrekar Kamalesh D23ORCID,Rao B S Satish234ORCID,Shenoy Bhasker K5ORCID

Affiliation:

1. Department of Postgraduate Studies in Applied Zoology, Alva’s College , Vidyagiri, Moodbidri, Dakshina Kannada, Karnataka 574227 , India

2. Department of Radiation Biology and Toxicology , Manipal School of Life Sciences, , Manipal, Karnataka 576104 , India

3. Manipal Academy of Higher Education , Manipal School of Life Sciences, , Manipal, Karnataka 576104 , India

4. Research Directorate Office, Manipal Academy of Higher Education , Manipal, Karnataka 576104 , India

5. Department of Applied Zoology, Mangalore University , Mangalagangothri, Dakshina Kannada, Karnataka 574199 , India

Abstract

Abstract Gallic acid (GA) is a natural polyhydroxyphenolic compound with antioxidant, antimutagenic, anti-inflammatory, and antineoplastic activities. Cisplatin (CPT) is a platinum-based chemotherapeutic drug, and it is the treatment of choice for breast, ovarian, testicular, head, and neck cancers. However, the use of anticancer drugs has undesirable effects on patients due to associated toxicities. Thus, it is necessary to search for alternatives that reduce unintended side effects and enhance anticancer potential. The use of natural compounds with the conventional chemotherapeutic drug is a new aspect of cancer therapy. In the present study, we evaluated the ability of GA in the modulation of anticancer effects of CPT in human breast adenocarcinoma cells (MCF-7) by performing MTT, apoptosis, clonogenic cell survival, and micronucleus assays. GA and CPT showed significant cytotoxic activities in MCF-7 cells in a dose-dependent manner. In combination therapy (GA 2.5, 5.0, and 10 μg/mL + CPT10 μg/mL), GA synergistically reduced the MCF-7 cell viability in contrast to the individual therapies. Cancer cells death by GA is through the induction of apoptosis as observed in the acridine orange and ethidium bromide dual staining method. The frequency of micronuclei (MN) was decreased significantly (P < 0.001) in combinational therapy, possibly reducing the risk of chemotherapy-induced MN. Moreover, GA in mono or combinational therapy did not induce any cytotoxic effects in normal breast epithelial cells (MCF-10A). GA did not show any significant difference in colony inhibition compared to CPT. This outcome shows its differential effects in normal and cancerous cells. Hence, the combination GA with chemotherapeutic drugs could represent a promising alternative therapy in cancer treatment with minimal side effects.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3