Transepithelial Barrier Dysfunction Drives Microbiota Dysbiosis to Initiate Epithelial Clock-driven Inflammation

Author:

Pai Yu-Chen1,Li Yi-Hsuan1,Turner Jerrold R2,Yu Linda Chia-Hui1

Affiliation:

1. Graduate Institute of Physiology, National Taiwan University College of Medicine , Taipei , Taiwan ROC

2. Brigham’s Women Hospital, Harvard Medical School , Boston, MA , USA

Abstract

Abstract Background Factors that contribute to inflammatory bowel disease [IBD] pathogenesis include genetic polymorphisms, barrier loss, and microbial dysbiosis. A major knowledge gap exists in the origins of the colitogenic microbiome and its relationship with barrier impairment. Epithelial myosin light chain kinase [MLCK] is a critical regulator of the paracellular barrier, but the effects of MLCK activation on the intraepithelial bacteria [IEB] and dysbiosis are incompletely understood. We hypothesise that MLCK-dependent bacterial endocytosis promotes pathobiont conversion and shapes a colitogenic microbiome. Methods To explore this, transgenic [Tg] mice with barrier loss induced by intestinal epithelium-specific expression of a constitutively active MLCK were compared with wild-type [WT] mice. Results When progeny of homozygous MLCK-Tg mice were separated after weaning by genotype [Tg/Tg, Tg/WT, WT/WT], increased IEB numbers associated with dysbiosis and more severe colitis were present in Tg/Tg and Tg/WT mice, relative to WT/WT mice. Cohousing with MLCK-Tg mice induced dysbiosis, increased IEB abundance, and exacerbated colitis in WT mice. Conversely, MLCK-Tg mice colonised with WT microbiota at birth displayed increased Escherichia abundance and greater colitis severity by 6 weeks of age. Microarray analysis revealed circadian rhythm disruption in WT mice co-housed with MLCK-Tg mice relative to WT mice housed only with WT mice. This circadian disruption required Rac1/STAT3-dependent microbial invasion but not MLCK activity, and resulted in increased proinflammatory cytokines and glucocorticoid downregulation. Conclusions The data demonstrate that barrier dysfunction induces dysbiosis and expansion of invasive microbes that lead to circadian disruption and mucosal inflammation. These results suggest that barrier-protective or bacterium-targeted precision medicine approaches may be of benefit to IBD patients.

Funder

Ministry of Science and Technology, Taiwan

National Health Research Institutes

National Taiwan University

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3