Diverse effects of coexpression of human SOD1 variants on motor neuron disease

Author:

Tokuda Eiichi12ORCID,Leykam Laura1ORCID,Zetterström Per1ORCID,Brännström Thomas1ORCID,Andersen Peter M3ORCID,Marklund Stefan L1ORCID

Affiliation:

1. Department of Medical Biosciences, Umeå University , Umeå, SE 901 85 ,

2. Laboratory of Clinical Medicine, School of Pharmacy, Nihon University , 7-7-1, Narashinodai, Funabashi, Chiba 274-8555 ,

3. Department of Clinical Science, Neurosciences, Umeå University , Umeå, SE 901 85 ,

Abstract

Abstract Mutations in superoxide dismutase-1 (SOD1) are a common cause of amyotrophic lateral sclerosis (ALS). Inheritance is as a rule dominant, but in carriers of the most common mutation, D90A, disease can develop in both homozygous and, more rarely, in heterozygous individuals with unexplained differences in clinical presentation. There is mounting evidence that prion-like spread of SOD1 aggregation is the primary cause of the disease. Two different strains of aggregates have been found to arise in human SOD1 (hSOD1) transgenic mouse models of ALS. Strain A is formed by most mutants including hSOD1G85R and hSOD1WT, whereas hSOD1D90A transgenic mice form a distinct strain B in addition to A. To explore the effects of aggregate strain propensities when hSOD1 variants are coexpressed, we generated digenic hSOD1G85R/WT and hSOD1G85R/D90A mice. Coexpression of hSOD1WT considerably shortened the lifespan of hSOD1G85R mice to the extent expected from the neurotoxicities of the variants alone. In contrast, coexpression of hSOD1D90A had a minimal effect on survival, far smaller than expected. Moreover, time from onset to the end stage was markedly prolonged in the hSOD1G85R/D90A mice. Aggregation of hSOD1 developed concomitantly with motor neuron disease, and the aggregates contained large amounts of both coexpressed variants in both digenic models. Our findings suggest that hSOD1WT has high a capacity to coaggregate with mutants and enhance neurotoxicity. Such interactions may be restricted by differences in strain propensities, which may contribute to the primarily recessive inheritance associated with the hSOD1D90A mutation.

Funder

Västerbotten County Council

Torsten and Ragnar Söderberg Foundation, Umeå University Insamlingsstiftelsen

Knut and Alice Wallenberg Foundation

Swedish Research Council

Swedish Brain Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3