Response Surface Methodology of Quantitative of Heterocyclic Aromatic Amines in Fried Fish Using Efficient Microextraction Method Coupled with High-Performance Liquid Chromatography: Central Composite Design

Author:

Omidi Narges1,Barzegar Fatemeh1,Abedi Abdol-Samad1,Kamankesh Marzieh2,Ghanati Kiandokht1,Mohammadi Abdorreza1ORCID

Affiliation:

1. Department of Food Science and Technology, National Nutrition and Food Technology Research Institute/Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran

Abstract

Abstract Meat and meat products are indispensable part of our diet. Heat processing of these tasty foods such as fried fish causes to form heterocyclic aromatic amines (HAAs). The sources of heating have directly affected on the level and type of HAAs. In this research, 2-amino-1-methyl-6-phenylimidazo [4‚5-b] pyridine (PhIP), 2-amino-3-methylimidazo [4,5-f]quinolone (IQ), 2-amino-3,4-dimethylimidazo [4,5-f] quinoline (MeIQ) and 2-amino-3,4-dimethylimidazo [4,5-f] quinoxaline (MeIQx) were determined using an efficient analytical methodology coupled with high-performance liquid chromatography. The effective parameters were optimized by central composite design. The results of this survey demonstrated that rang of relative standard deviation were between 4.5 and 8.2, extraction recoveries were obtained 86–97% and limits of detection were between 0.40 and 0.63 for 4 HAAs. The amounts of HAAs found in 20 different fried fish samples were between 0 and 4.8 ng g−1. PhIP with 1.57 ng g−1 and MeIQ with 2.08 ng g−1 have the lowest and highest average level of HAAs, respectively.

Funder

Department of Food Science and Technology

National Nutrition and Food Technology Research Institute

Faculty of Nutrition Science

Food Science and Technology

Shahid Beheshti University of Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3