Vascular endothelial S1pr1 ameliorates adverse cardiac remodelling via stimulating reparative macrophage proliferation after myocardial infarction

Author:

Kuang Yashu1,Li Xiaolin2,Liu Xiuxiang1,Wei Lu1,Chen Xiaoli1,Liu Jie1,Zhuang Tao1,Pi Jingjiang1,Wang Yanfang1,Zhu Chenying3,Gong Xin3,Hu Hao3,Yu Zuoren1,Li Jiming1,Yu Ping3,Fan Huimin3,Zhang Yuzhen1ORCID,Liu Zhongmin1,Zhang Lin1ORCID

Affiliation:

1. Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Pudong New District, Shanghai 200120, China

2. Medical School, Internal Medicine Department, Jinggangshan University, Ji’an 343009, China

3. Heart Failure Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China

Abstract

Abstract Aims  Endothelial cell (EC) homoeostasis plays an important role in normal physiological cardiac functions, and its dysfunction significantly influences pathological cardiac remodelling after myocardial infarction (MI). It has been shown that the sphingosine 1-phosphate receptor 1 (S1pr1) was highly expressed in ECs and played an important role in maintaining endothelial functions. We thus hypothesized that the endothelial S1pr1 might be involved in post-MI cardiac remodelling. Methods and results  Our study showed that the specific loss of endothelial S1pr1 exacerbated post-MI cardiac remodelling and worsened cardiac dysfunction. We found that the loss of endothelial S1pr1 significantly reduced Ly6clow macrophage accumulation, which is critical for the resolution of inflammation and cardiac healing following MI. The reduced reparative macrophages in post-MI myocardium contributed to the detrimental effects of endothelial S1pr1 deficiency on post-MI cardiac remodelling. Further investigations showed that the loss of endothelial S1pr1-reduced Ly6clow macrophage proliferation, while the pharmacological activation of S1pr1-enhanced Ly6clow macrophage proliferation, thereby ameliorated cardiac remodelling after MI. A mechanism study showed that S1P/S1pr1 activated the ERK signalling pathway and enhanced colony-stimulating factor 1 (CSF1) expression, which promoted Ly6clow macrophage proliferation in a cell-contact manner. The blockade of CSF1 signalling reversed the enhancing effect of S1pr1 activation on Ly6clow macrophage proliferation and worsened post-MI cardiac remodelling. Conclusion  This study reveals that cardiac microvascular endothelium promotes reparative macrophage proliferation in injured hearts via the S1P/S1PR1/ERK/CSF1 pathway and thus ameliorates post-MI adverse cardiac remodelling.

Funder

National Natural Science Foundation of China

Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai

National Key Research and Development Program of China

Science and Technology Commission of Shanghai Municipality

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3