A new species of Chrysemys (Emydidae: Deirochelyinae) from the latest Miocene-Early Pliocene of Tennessee, USA and its implications for the evolution of painted turtles

Author:

Jasinski Steven E123ORCID

Affiliation:

1. Department of Environmental Science and Sustainability, Harrisburg University of Science and Technology , 326 Market Street, Harrisburg, PA 17101-2208 , USA

2. Don Sundquist Center of Excellence in Paleontology , Johnson City, TN 37614-1709 , USA

3. Department of Earth and Environmental Science, University of Pennsylvania , Philadelphia, PA 19104-6316 , USA

Abstract

Abstract Chrysemys, commonly known as painted turtles, have the largest native biogeographic range of all North American turtles. The presence of a new species, Chrysemys corniculata sp. nov., in the Late Hemphillian-Early Blancan North American Land Mammal Age (latest Miocene-Early Pliocene) of Tennessee provides further data on the evolution of Chrysemys, deirochelyines and emydids. The new fossil species lies basally in Deirochelyinae and suggests that either Chrysemys represents a basal deirochelyine morphology and is one of the oldest genera in the family, or that similar basal morphologies have evolved multiple times throughout deirochelyine evolution. Its occurrence at the same time as Chrysemys picta, during the Hemphillian-Early Blancan, a time of high biodiversity in emydid turtles, suggests either multiple species of Chrysemys during the Late Hemphillian-Early Blancan (at least one in the mid-west and one farther east), or multiple lineages with basal morphologies during this time. Early fossil deirochelyines occur after the greenhouse conditions of the Eocene and the Mid-Miocene Climatic Optimum. Vicariance led to deirochelyines becoming more speciose, including the occurrence of C. corniculata, after the Mid-Miocene Climatic Optimum, potentially suggesting cooler temperatures aided in the evolution of the subfamily and their speciation during the Hemphillian and into the Early Blancan.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3