Single-cell transcriptomes and runx2b−/− mutants reveal the genetic signatures of intermuscular bone formation in zebrafish

Author:

Nie Chun-Hong12,Wan Shi-Ming123,Chen Yu-Long12,Huysseune Ann4,Wu Ya-Ming12,Zhou Jia-Jia12,Hilsdorf Alexandre Wagner Silva5,Wang Wei-Min12,Witten Paul Eckhard4,Lin Qiang3,Gao Ze-Xia126

Affiliation:

1. College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University , Wuhan 430070 , China

2. Hubei Hongshan Laboratory , Wuhan 430070 , China

3. CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences , Guangzhou 510301 , China

4. Department of Biology, Ghent University , Ghent B-9000 , Belgium

5. Unit of Biotechnology, University of Mogi das Cruzes , Mogi das Cruzes, Săo Paulo 08780-911, Brazil

6. Guangdong Laboratory for Lingnan Modern Agriculture , Guangzhou 510000 , China

Abstract

Abstract Intermuscular bones (IBs) are mineralized spicules, present in the myosepta of many, but not all, teleost species. IBs are often small and sharp, and they consequently limit how the fish can be processed; the IBs may cause injury or trauma if lodged in consumers’ throats or mouths, and therefore affect the appeal of the fish to many consumers. The development of IBs in teleosts is still not fully understood and the molecular basis of IB development remains to be established. Here, the characteristics of IB tissue are evaluated based on single-cell transcriptomics in wild-type zebrafish. The analysis defined 18 distinct cell types. Differentiation trajectories showed that IBs are derived from tendons and that a core tendon-osteoblast cell lineage is related to IB formation. In particular, the functions of 10 candidate genes were evaluated via CRISPR-Cas9 mutants. Among those, runx2b−/− mutants completely lost IBs, while swimming performance, growth and bone mineral density were not significantly different from runx2b+/+ zebrafish. Comparative single-cell RNA sequencing (scRNA-seq) analysis in runx2b−/− and runx2b+/+ zebrafish revealed the role of osteoblasts in IB formation. In addition, differentially expressed genes were enriched in the transforming growth factor β/bone morphogenetic protein (TGF-β/BMP) pathway after runx2b deletion. This study provides evidence for the crucial role of runx2b regulation in IB formation. Genetic breeding can target runx2b regulation and generate strains of commercial fish species without IBs, which can improve the safe consumption and economic value of many farmed fish species.

Funder

Earmarked Fund for China Agriculture Research System

National Natural Science Foundation of China

National Key Research and Development Program of China

Ministry of Education

CAS

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3