Hierarchical palladium catalyst for highly active and stable water oxidation in acidic media

Author:

Peng Jing1,Sun Haofeng1,Ni Kun1,Wu Jiajing1,Sun Xinyu1,Su Yueqi1,Cheng Han1,Liu Yuhua1,Guo Yuqiao1,Bi Wentuan12,Zhu Yanwu1,Wu Changzheng12,Xie Yi12

Affiliation:

1. Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Nanoscience, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China , Hefei 230026 , China

2. Institute of Energy, Hefei Comprehensive National Science Center , Hefei 230026 , China

Abstract

ABSTRACT Acidic water electrolysis is of great importance for boosting the development of renewable energy. However, it severely suffers from the trade-off between high activity and long lifespan for oxygen evolution catalysts on the anode side. This is because the sluggish kinetics of oxygen evolution reaction necessitates the application of a high overpotential to achieve considerable current, which inevitably drives the catalysts far away from their thermodynamic equilibrium states. Here we demonstrate a new oxygen evolution model catalyst-hierarchical palladium (Pd) whose performance even surpasses the benchmark Ir- and Ru-based materials. The Pd catalyst displays an ultralow overpotential (196 mV), excellent durability and mitigated degradation (66 μV h−1) at 10 mA cm−2 in 1 M HClO4. Tensile strain on Pd (111) facets weakens the binding of oxygen species on electrochemical etching-derived hierarchical Pd and thereby leads to two orders of magnitudes of enhancement of mass activity in comparison to the parent Pd bulk materials. Furthermore, the Pd catalyst displays the bifunctional catalytic properties for both oxygen and hydrogen evolutions and can deliver a current density of 2 A cm–2 at a low cell voltage of 1.771 V when fabricated into polymer electrolyte membrane electrolyser.

Funder

Ministry of Science and Technology

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Development Foundation of Hefei Center for Physical Science and Technology

Hefei Science Center, Chinese Academy of Sciences

Chinese Academy of Sciences

Anhui Provincial Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3